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The effect of gravity on a statistically homogeneous dispersion of small particles in 
fluid is to disturb the thermodynamic equilibrium slightly when the Reynolds and 
PBclet numbers associated with the resulting motion are small. In these circumstances 
the kinetic coefficients for the sedimentation velocities of two different species of 
particle should satisfy the Onsager reciprocal relation. It is shown analytically that 
the explicit expressions for the sedimentation velocities of the two species of spherical 
particle in a dilute bidispersion at small PBclet number found previously (Batchelor 
1982) are in fact consistent with the reciprocal relation. It follows that the known 
kinetic coefficients for the Brownian diffusion of the particles down concentration 
gradients in a dilute bidispersion (Batchelor 1983) likewise satisfy the reciprocal 
relation. 

1. Introduction 
When a statistical system in equilibrium is disturbed by the application of an 

external force or influence, a transport or flux of some conserved quantity is normally 
generated in the system. There may be several independent ‘forces’ (the word being 
used in a generalized sense to mean an externally controlled agency causing change 
in the system), and a corresponding number of ‘fluxes’. The fluxes represent 
irreversible thermodynamic processes, and for a wide class of systems and of forces 
the expression for the rate of change of entropy of the system is of the form 

where X, is one of the m independent forces and J, is the associated flux, said to be 
conjugate to the force X,. The forces and fluxes are written here as vectors since that 
is the case of interest to us, but they could be tensors of rank other than one. 

If now the forces are small in magnitude and cause only a small departure from 
the state of equilibrium, we may suppose the relation between cause (the forces) and 
effect (the fluxes) to be linear, that is 

m 

correct to the first order in the X,. The so-called kinetic or phenomenological 
coefficients L ,  representing (when i +j) the coupling between the effects of the 
applied forces are parameters of the equilibrium system, and here are tensors of rank 
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two. By postulating reversibility of the microscopic entities of the system Onsager 
(1931) was able to establish the reciprocal relation - 

L,, = L,,, (1.3) 

where the tilde denotes the transpose of the tensor. Onsager's original derivation and 
later modifications have been extensively discussed in the literature of statistical 
physics. Our concern, however, is with the application of the reciprocal relation, itself 
the subject of many papers and books, of which the most relevant to  considerations 
of dispersions of particles in fluid is perhaps de Groot & Mazur (1962). 

A few years ago I derived analytical expressions for the mean velocity of the 
different species of spherical particle in a dilute polydispersion falling under gravity 
with small Reynolds number of the motion in the fluid (Batchelor 1982, to  be referred 
to henceforth as Paper I). These expressions, which are correct to terms of the first 
degree in the (small) volume fractions of the different species, contain the probability 
density function for the separation of particle pairs. This function is determined by 
the relative motion of two particles due to the applied forces, interparticle forces, and 
Brownian diffusion, and is not known in general, but asymptotic forms for small and 
large values of the PQclet number were computed in a companion paper and used to  
obtain numerical values of the mean velocities in the two limits (Batchelor & Wen 
1982, hereinafter referred to as Paper 11). There is a close connection between the 
response of particles to the effect of an applied force a t  small PQclet number and the 
diffusive flux of particles down a concentration gradient, and in a third paper 
(Batchelor 1983, hereinafter referred to as Paper 111) the results for the sedimentation 
velocity were used to obtain analytical expressions for, and numerical values of, the 
Brownian diffusivities of the different particle species in a dilute polydispersion. At 
the time I had not realised that the hydrodynamic interaction of the different particle 
species falling under gravity is an example of the type of coupling of the effects of 
independent forces acting on a statistical system to which the Onsager reciprocal 
relation applies. The reciprocal relation is applicable to small departures from 
equilibrium, and hence to  sedimentation in a polydisperse system at small values of 
the PBclct number only. 

The analytical expressions for the kinetic coefficients obtainable from the published 
expressions for the mean particle velocities do not obviously satisfy the Onsager 
reciprocal relation, and this may have puzzled those who are more a t  home in 
statistical physics and could see immediately the need to satisfy this relation. 

The purpose of this note, which is essentially an addendum to the three previous 
papers on sedimentation and diffusion in a polydispersion, is to  provide an explicit 
proof that the results are in fact consistent with the Onsager reciprocal relation. We 
do not learn anything new from this proof, although the new analytical form of the 
kinetic coefficients that shows the Onsager symmetry explicitly is of some interest. 

' It is reassuring that the published results for the sedimentation velocities a t  small 
values of the PQclet number pass one important test of correctness and that, in 
consequence of the linear relation between the particle diffusivities in a polydispersion 
and the low-P8clet number sedimentation coefficients, the same is true of the 
formulae for the diffusivities. 

The argument necessary to establish that the published formulae for the sedi- 
mentation velocities a t  small PQclet number satisfy the Onsager reciprocal relation is 
presented here with only as much detail as is needed for the proof to be intelligible. 
A more didactic version, which does not assume familiarity with the previously 
published papers and which discusses the relevance of reciprocal relations - Lorentz 
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as well as Onsager - to statistical hydrodynamics problems in colloid science, was 
presented in a lecture to the 17th Polish Biennial Fluid Mechanics Symposium in 
September 1985 and will be published in the proceedings of that Symposium 
(Batchelor 1986). The proof in the present note is more general in that it allows for 
the existence of interparticle forces. 

2. The kinetic coef3cients for sedimentation in a dilute bidispersion 
It has been seen (Paper I, $6.3) that when a steady external force I;; is applied to 

each of the spherical particles of species j in a statistically homogeneous dilute 
dispersion, with 11;;l being small enough to ensure that the PBclet number of the 
resulting motion is small, the mean velocity (U,) of the particles of species i ,  relative 
to axes such that the flux of material (i.e. both fluid and particle) volume in any 
direction is zero, is given by 

6 7 ~ p ~ ( U , )  = &+ C #5(S&&+A3PS;,4) (i = 1,2 . .  .m) (2.1) 

correct to terms of the first degree in the particle volume fractions, where 71 is the 
fluid viscosity, ui is the particle radius, n, is the number density of particles of species 
i, and 

m 

5-1 

A, = a5/ui, = $ R a: n,. 

The dimensionless coefficients S;, Se are determined by the interaction of a sphere 
of species i with a sphere of speciesj, and analytical expressions for them have been 
obtained. To the above order of approximation only pair interactions are relevant, 
and we may take the number of particle species (m) to be 2 without loss of generality. 
The condition to be satisfied by the external forces may be written as 

- 
6x7 \< -k q) 

where Yo) = F5/6xyu5. Note that although the external forces represent gravity, and 
so are parallel, in the case for which the calculations of mean particle velocity were 
made, the forces 4 are independent perturbations of an isotropic equilibrium state 
and (2.1) holds for arbitrary directions of the 1;;. 

Now the force I;; applied to each particle of speciesj and the density of flux of 
number of particles of this species, n5 (U,), may be identified, in conformity with 
( l . l ) ,  with the generalized force and flux considered in the Onsager theory. The 
kinetic coefficients for sedimentation are thus defined by 

2 

1-1 - - 

We obtain coefficients with a clear physical meaning by making the slight 
transformation 

for we then have 
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showing that the B, are dimensionless bulk mobility coeficients. The Onsager 
reciprocal relation (1.3) is hence equivalent to 

On comparing (2.1) and (2.5) we find for the case of a dilute dispersion 

where t is the unit isotropic tensor and 6fj = 1 when i = j and is zero otherwise. The 
Onsager reciprocal relation (2.6) has consequences only for the non-diagonal elements 
of this matrix of tensor mobilities, and is seen to be satisfied provided 

that is, on changing to the notation A = a2/al, provided 

We now examine the expression for S:, published previously to see whether it is 
consistent with (2.8). It was shown (Paper I, $6.3) that 

sT2 = SYAG) + s:gI) + STAB), (2.9) 

where the three contributions on the right-hand side have different physical origins. 
The first term, given explicitly by 

S;iG) = (T) 1+A2 O0 {(A12+2B12) exp(,>-:} - @12 s2ds-(A2+3A+1), (2.10) 
2 

represents the contribution to the mean velocity of the particles of one species due 
to the application of the external force to the particles of the other species. In  (2.10) 
Al,(s) and B12(s) are two-sphere mobility functions defined in Paper I and known 
numerically, Gl2(s) is the potential of the force exerted between a sphere of species 
1 and a sphere of species 2 (a force which may be of electrostatic or van der Waals 
type), and s = 2r/(a1+a2). Note that the small departure of the pair-distribution 
function from its equilibrium form caused by the application of the external forces 
does not appear in the integral in (2.10) because it is of the order P12 and makes a 
negligible contribution. 

The second term, given explicitly by? 

represents the direct contribution to the mean velocity of the particles of species 1 
due to the force exerted by particles of species 2. This contribution would be zero 
if the pair-distribution function had spherical symmetry, as it does in the 
equilibrium state. However, there is a departure here from spherical symmetry 

t I take this opportunity of correcting a transcription error in the previous papers: the factor 
h in the expression for Slil) given in (6.11) in Paper I, and again in (3.8) in Paper 111, should be 
replaced by (1 + A)2/4h2. The numerical values calculated in Paper I1 were confined to the case A = 1 
and are not affected. 
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FIGURE 1.  The circles indicate calculated values of SIJB)/A as a function of A ( = a,/a,) for particles 
which exert no direct force on each other. The broken curve has been drawn through the points 
with the symmetry about A = 1 that is required by the Onsager reciprocal relation for two species 
of particle acted on by small external forces. 

caused by the applied forces (and represented in (2.11) by Q"(s), which will be defined 
in (3.1)) which although of the order of the PBclet number leads to a non-small 
contribution to the mean particle velocities from the interparticle force if 1fD121 is of 
the order of kT, as it may be in practice. 

The third term, given explicitly by 

(2.12) 

is the contribution due to the relative diffusion of pairs of particles. Here a large 
diffusivity acts on a pair-distribution function made slightly non-isotropic by the 
effect of the applied forces, yielding a product of order unity. 

Similar decompositions of S;, and Si2 and of S;, may be made but are not needed 
here. 

The queston now is whether the sum of the three expressions (2.10), (2.11), (2.12) 
when divided by h is invariant to the exchange of the suffixes 1 and 2. The function 
Gl2(s) is so invariant by definition. And for the two-sphere mobility functions, it can 
be shown by use of the Lorentz reciprocal theorem (Paper I) that 

(2.13) 

However, there are no evident invariant properties of the function Q"(s, A) ,  which 
satisfies a linear second-order differential equation with coefficients that are linear 
combinations of the two-sphere mobility functions. 

It is clear by inspection and the use of (2.13) that the one contribution to Sy, that 
does not depend on Q", viz. has the required invariance. This is actually to be 

I = A-1), A )  = A21(s, A )  = 

B,,(s, A )  = B,,(s, A-) ,  B1&, A )  = B,,(s, A )  = Bz1(s, A-1). 
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expected on grounds other than the Onsager reciprocal relation, for i t  can be shown 
from the Lorentz reciprocal theorem that when external forces are applied to 
particles in a configuration whose statistical properties are given, independently of 
the applied forces, the instantaneous sedimentation coefficient S:, satisfies the 
reciprocal relation (2.8) (Batchelor 1986). 

On the other hand, neither separately nor in sum do the two contributions &‘I.$’) 
and AS;;”) show the required invariance, a t  any rate not in their present forms. This 
is puzzling a t  first sight, until it is realized that we could not expect to be able to  
prove the invariance without making some use of the differential equation of which 
Q“ is the solution. We obtain some encouragement to  seek an analytical proof from 
the numerical values of S;;”) for the case G12 = 0 (in which event SYf) = 0) which were 
found in Paper I1 and are reproduced here in figure l . t  Despite a little difference 
between the values for A = 8 and A = +, where the accuracy of the calculation is not 
high, the numerical values are clearly consistent with the requirement of the Onsager 
reciprocal relation. 

3. Proof that S;, satisfies the Onsager symmetry relation 
There is no reason to  expect the contributions Syf )  and ST.$”) separately to satisfy 

Onsager symmetry, and we therefore consider their sum. The proof is a matter of 
manipulation of the integrals in (2.1 1 )  and (2.12), and involves use of the differential 
equation for the departure of the pair-distribution function from its equilibrium 
form. At small Pkclet number the pair-distribution function may be written as 

for s 2 2, where @‘)and U(,o) are being used, as in (2.2), as measures of the external 
forces. The non-dimensional functions Q’(s, A )  and Q”(s, A )  enter into the expressions 
for the coefficients Si2 and S;, respectively defined in (2.1). Now the condition of 
conservation of particle pairs leads to  differential equations for Q‘ and Q” which may 
convenient)ly be written together as 

where 
2-41, Lrj = A  2 ~ 3 ~ , ,  

L‘ = -Al l+-  1 + A ’  2A2, - 1+A (3.3) 

and similarly for the relations between M ,  M” and the pair mobility functions Bll, 
etc. The functions G(s, A )  and H ( s ,  A )  occur in the expression for the tensor relative 
diffusivity of two spheres, and are known as linear combinations of the A and B 
functions respectively ; and 

G(s, A )  = G(s, A-’), H(s, A )  = H(s, A-’). 

t In April 1985 I learnt from Dr H. N. W. Lekkerkerker of the Van’t Hoff Laboratory at the 
University of Utrecht that he also had realized that the Onsager reciprocal relation has some 
consequences for the sedimentation coefficients Sr,, and that the symmetry relation (2.8) is indeed 
satisfied approximately by the numerical values given in Paper I1 for the case = 0. 
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Equations (3 .2)  can be written more compactly as 

(3.4) 

where 8, B, r, ii?!’, L“, stand for the products of exp(-@,,/kT) and the 
corresponding symbols without the tilde. We now notice that with the aid of (3.3) 
the integrands in (2.11) and (2.12) can be rewritten wholly in terms of the L- and 
M-functions and that 

s;p) + s;,p = - 1 (-) 1 + A 2  { 2 4  E’ - lp) + .s2 g} Q” d . ~ .  
2 2A 2 d.S 

This form allows us to  use the differential equation for Q’ and to find 

(3.5) 

since szO dQ’/ds represents the relative diffusive flux of sphere pairs and must be zero 
at s = 2 (where the spheres are touching). The last step in the argument is to deduce 
from the definition of Q’ and &” in (3.1) that by exchanging the roles of the two 
species (and remembering from (2.2) that  the P6clet number P12 is a signed quantity). 
we find 

Q’(A)  = -A*Q”(A-’). (3.7) 

It then follows from (3.6) that (8;f)+8;jB))/A is invariant to the exchange of the 
1 and 2 species. Since this has already been found to  be true for 8:6“)/A. the proof 
that the Onsager reciprocal relation (2.8) is satisfied by the expressions for the 
sedimentation coefficients derived in Paper I is complete. 

Note that the Onsager symmetry of (#;,$I) + S;iB))/A, unlike that of $;,$“)/A. involves 
considerations of the relative diffusion of particles and cannot be proved by use of 
the Stokes equation of motion of the fluid (from which the Lorentz reciprocal relation 
follows) alone. 

Manipulations similar to  those leading to  (3.6) also give 

4. The kinetic coefficients for diffusion of the particles in a bidispersion 
One of the conditions for thermodynamic equilibrium of a bidispersion is that the 

chemical potential of each of the three constituents should be uniform. If these 
chemical potentials are non-uniform, as a consequence of the existence of a spatial 
gradient of concentration of one or both particle species, diffusive fluxes of the 
particles (and also of the fluid, but this is not independent in a volume-preserving 
system) will be generated, and the fluxes of the two species will in general be coupled. 

The independent generalized fluxes and forces may here be identified. in conformity 
with (1.1)) as 
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where (as in Paper 111) ( Ui)  is the local mean velocity, relative to zero-volume-flux 
axes, of particles of species i resulting from the existence of the concentration 
gradients, pi and vi are the local chemical potential and volume of a particle species 
i, and q5 = q5, + q52. Also, if the temperature and pressure are uniform throughout the 
dispersion, we have 

The kinetic coefficients for diffusion in a bidispersion are thus given by 

2 

ni( U,) = C L#')*XjD) ,  (4.3) 
j-1 

and the Onsager reciprocal relation (1.3) shows that LiF), which is an isotropic tensor 
in view of the isotropic structure of the dispersion in equilibrium, is symmetrical in 
the suffixes i and j .  

Now for the determination of the kinetic coefficients associated with diffusion, one 
may use a type of argument due originally to Einstein to show that the thermodynamic 
or generalized forces qD) given by (4.1) generate diffusive fluxes exactly as if they 
were actual small steady external forces acting on the particles (Batchelor 1976). It 
follows that the Liy) are identical with the kinetic coefficients for sedimentation at 
small PBclet number defined in (2.3), that LiF) is related to the bulk mobility 
coefficients as in (2.4), that the specific expressions found for B, and thence for L i;) 
for the case of a dilute dispersion are also applicable to LiF), and that as shown in 
$3 these expressions for LiF) do satisfy the Onsager reciprocal relation. There is a 
mechanical aspect to the process of Brownian diffusion of particles, viz. the way in 
which the particles respond to the effective forces acting on them in the presence of 
concentration gradients, and it turns out that the Onsager reciprocal relation 
involves only this mechanical aspect common to the processes of diffusion and 
sedimentation. 

Nothing more need be said on the matter of satisfaction of the Onsager reciprocal 
relation, but for completeness we note that the particle diffusivities defined for 
practical convenience as the coefficients in the relations 

n*( Ui)  = -D,.Vnj, (4-4) 

may be found in terms of LiF) by comparing (4.4) and (4.3). With the help of (4.1) 
and (4.2) we obtain 

which is valid for arbitrary values of the particle concentrations n,, n2. The Onsager 
symmetry of Lip) thus implies a linear relation, with rather complicated coefficients, 
between the various elements of the diffusivity matrix D,.  The complexity of the 
coefficients in this Onsager relation between the elements of D ,  arises from the 
various derivatives of the chemical potentials present in (4.5) and tends to obscure 
the simplicity of the reciprocal relation for the kinetic coefficients and its essentially 
mechanical significance. 

In  the case of a dilute bidispersion of spherical particles for which only pair 
interactions are significant, approximate expressions correct to the order of the first 
power of the volume fractions q51, q52 are available for LiF) (being the same as those 
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for Li?) given in (2.4) with (2.7)) and for ,ui-kT logni (see Paper III), and hence also 
for D,. Numerical values of the coefficients of $1 and $ z  in the expression for D ,  for 
various values of A( = az /a l )  are give in Paper 111. 
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